| ||||||
姓 名: | 刘振 | |||||
职 称: | 教授 | |||||
导师类别: | 博士生导师/硕士生导师 | |||||
系 室: | 化工系 | |||||
研究领域: | 催化材料与催化剂 | |||||
电子邮箱: | zhenliu@upc.edu.cn | |||||
联系电话: | 18561602890(微信同号) | |||||
◎教育背景 | ||||||
2015-2016,美国宾夕法尼亚州立大学,材料研究所,访问学者; 2005–2010, 湖南大学, 化学工程与技术, 博士; 2001–2005, 湖南大学, 化学工程与工艺, 学士。 | ||||||
◎工作经历 | ||||||
2024年-至今,威客电竞,威客电竞化学工程系,教授 2016年-2023年,威客电竞,化学工程学院化学工程系,副教授 2011年-2015年,威客电竞,化学工程学院化学工程系,讲师 | ||||||
◎研究方向 | ||||||
[1] 新型分子筛及金属/酸双功能材料的设计与合成; [2] C1化工与催化:甲醇制烯烃、CO2加氢转化、F-T反应、低碳烷烃催化裂解等; [3] 低碳烯烃和芳烃等高值化学品生产工艺及催化剂设计合成; [4] 清洁油品生产技术(催化裂化、异构化、反应/吸附脱硫)。 | ||||||
◎科研项目 | ||||||
[1] 国家自然科学基金委员会, 面上项目, 22472203:生物质基费托合成催化剂的微区限域合成和柴油产物的孔道限域调控, 2025-01-01 至 2028-12-31, 主持 [2] 山东省科技厅, 山东省自然科学基金-创新发展联合基金, ZR2022LFG003:缺陷可控的纳米多级孔ZSM-5分子筛的合成及应用基础研究, 2023-01 至 2025-12, 参与 [3] 国家自然科学基金委员会, 面上项目, 22272200:微区限域固态反应法合成CO2直接加氢制DME双功能催化剂及协同催化作用机制研究, 2023-01-01 至 2026-12-31, 主持 [4] 国家重点研发计划子课题,2022YFA1503402:介孔USY 分子筛微区限域法构建高分散金属活性位技术 2022-12-01至2026-11-30, 主持 [5] 宁夏重点研发计划项目重大项目子课题, 2018YFE0118200:费托复杂多相催化体系多尺度扩散规律及反应动力学研究 2022-01-01至2024-12-01, 主持 [6] 国家重点研发计划政府间国际科技创新合作重点专项:生物质废弃物合成化学品和液体燃料关键技术 2020-01-01至2022-12-31, 主持 [7] 中石油石化院:炼油催化剂关键催化材料研究开发与工业放大 2019-09-01至2020-08-30, 参与 [8] 山东省重点研发计划,2019GSF109109:浒苔基多孔碳材料的合成及其汽油深度吸附脱硫应用研究 2019-07-01至2021-07-01, 主持 [9] 北京低碳清洁能源研究所:费托铁基催化剂工业应用失活研究 2019-05-01至2021-05-01 , 主持 [10] 中石油:FCC废催化剂复活技术研究(第一期) 2018-07-05至2018-07-31, 参与 [11] 自主创新科研计划项目(理工科)青年基金:SAPO-34分子筛酸性调变合成及MTO性能研究 2018-01-01至2020-12-31 , 主持 [12] 山东省自然科学基金青年基金,ZR2017QB007:氮原子可控掺杂合成多孔碳材料及CO2吸附增强机理研究2017-08-01至2019-12-31 , 主持 [13] 中石油石化院:微介复合孔道超稳MeSAPO-11分子筛合成新技术2017-02-01至2019-06-30, 参与 [14] 中国石油集团工程设计有限责任公司北京分公司:Crude Oil Desulfurization Technologies Screening Study 2016-09-28至2019-12-27 , 参与 [15] 自主创新科研计划项目(理工科):多级孔ZSM-5分子筛的活性敏感结构设计、调控及其在FCC反应中的作用机制研究 2015-05-01至2017-06-01 , 主持 [16] 中国石油科技创新基金项目,2014D-5006-0404:高抗碱氮柴油异构降凝催化剂的合成技术,2014-07-01至2016-06-30, 主持 [17] 国家自然科学基金,青年科学基金项目,21206196,石墨相氮化碳固载化催化剂的制备及其在甲醇羰基化制醋酸反应中的应用研究,2013-01-01至2015-12-31, 主持 | ||||||
◎代表性论文及专利 | ||||||
1.论文 已经发表学术论文46 篇,(SCI 收录40 篇、EI 收录6 篇),申请国内外发明专利31 件(中国23 件,PCT4 件,美国2 件,欧洲2 件)。 [1] Z. Liu*, & Ma, Z. et al., Promoter modified hydrophobic core–shell Fe-based catalysts for Fischer-Tropsch synthesis: Enhancing its performance in suppressing water gas shift reaction. Fuel 2024,374, 132485. [2] Z. Liu, & Z.F. Yan, et al., Fabrication of 3D framework of KIT-6 with CuO NPs for catalytic reduction of 4-nitrophenol and methylene blue. J. Mol. Liq. 2024,400, 124541. [3] Z. Liu*, & Z.F. Yan, et al., Fabrication of nanoconfined spaces of KIT-6 with small-sized SnO2 for enhanced oxidative desulfurization of fuel: Kinetics and thermodynamics. Sep. Purif. Technol. 2024,331, 125745. [4] H. Sun & Z. Liu, Ru-based catalysts for efficient CO2 methanation: Synergistic catalysis between oxygen vacancies and basic sites. Nano Research 2023,16, 12153–12164. [5] Z. Liu*, & Ma, Z., Electrospinning prepared nickel-based carbon fibers with enhanced adsorption capacity for adsorption desulfurization of fuels. Chemical Engineering Journal 2023,478, 147254. [6] Z. Liu*, & Z.F. Yan, et al. Sn-doped nanoconfinements of SBA-15 for oxidative desulfurization: Kinetics and thermodynamics, Fuel, 346 (2023) 128372. IF=8.035 [7] Z. Liu*, & Z.F. Yan, et al., Magnetic Fe3O4@MIL-100(Fe) core-shells decorated with gold nanoparticles for enhanced catalytic reduction of 4-nitrophenol and degradation of azo dye, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 660 (2023) 130904. IF=5.518 [8] H. Sun & Z. Liu*, et al., XAS/DRIFTS/MS spectroscopy for time-resolved operando study of integrated carbon capture and utilisation process. Sep Purif Technol, 2022, 298: 121622. IF=9.136 [9] Z. Liu, & X.M. Liu, et al., Seeds induced Beta zeolite synthesis with low SDA for n-heptane catalytic cracking reaction. Catal Today, 405-406 (2022) 235-241. IF=6.562 [10] Z. Liu, & Z.F. Yan, et al., Dry gel assisting crystallization of bifunctional CuO–ZnO–Al2O3/SiO2–Al2O3 catalysts for CO2 hydrogenation. Biomass and Bioenergy, 2022, 163: 106525. IF=5.774 [11] G. Giordano, Z. Liu, & Z.F. Yan, et al., Passivated Surface of High Aluminum Containing ZSM-5 by Silicalite-1: Synthesis and Application in Dehydration Reaction. ACS Sustainable Chemistry & Engineering, 2022, 10(15): 4839-48. IF=9.224 [12] H. Li, & Z. Liu, et al., Deactivation behavior investigation on commercial precipitated iron Fischer–Tropsch catalyst for long time reaction. Journal of Porous Materials, 2022, 29: 307-15. IF=2.523 [13] Z. Liu, & Z.F. Yan, et al., Mother liquor induced preparation of SAPO-34 zeolite for MTO reaction. Catal Today, 2020, 358: 109-15. IF= 6.562 [14] F. Subhan, & Z. Liu, et al., Highly dispersive lanthanum oxide fabricated in confined space of SBA-15 for adsorptive desulfurization, Chemical Engineering Journal,2020, 384: 123271. IF=16.744 [15] C. Wang, & Z. Liu, et al., Dependence of Surface Tension on Surface Concentration in Ionic Surfactant Solutions and Influences of Supporting Electrolyte Therein, Tenside Surfactants Detergents, 56 (2019) 484-489. [16] F. Subhan, & Z. Liu, et al.,Ammonia assisted functionalization of cuprous oxide within confined spaces of SBA-15 for adsorptive desulfurization, Chemical Engineering Journal, 339 (2018) 557-565. [17] W. Xing, Z. Liu, & Z.F. Yan, et al., Revealing the impacting factors of cathodic carbon catalysts for Li-CO2 batteries in the pore-structure point of view, Electrochim. Acta, 311 (2019) 41-49. [18] Z. Liu*, & Z.F. Yan, et al., Hydrothermal synthesis of beta zeolite from industrial silica sol as silicon source, Journal of Porous Materials, 26 (2019) 1017-1025. [19] F. Subhan, & Z. Liu, et al. Facile functionalization of 3-D ordered KIT-6 with cuprous oxide for deep desulfurization, Chemical Engineering Journal, 330 (2017) 372-382. [20] Y. Liu, Z. Liu, & XM Liu, et al., Promoter effect of heteroatom substituted AlPO-11 molecular sieves in hydrocarbons cracking reaction, J. Colloid Interface Sci., 528 (2018) 330-335. [21] 贾智姣, 刘振, 等人 复合模板剂诱导合成SAPO-34分子筛及其MTO性能研究, 工业催化, 26 (2018) 50-55. [22] F. Subhan , Z. Liu, & Z.F. Yan, et al. Confinement of mesopores within ZSM-5 and functionalization with Ni NPs for deep desulfurization, Chemical Engineering Journal, 354 (2018) 706-715. [23] Z. Liu, & Z.F. Yan, et al. New strategy to prepare ultramicroporous carbon by ionic activation for superior CO2 capture, Chemical Engineering Journal, 337 (2018) 290-299. [24] W. Xing, Z. Liu, & Z.F. Yan, et al., Functionalization of petroleum coke-based mesoporous carbon for synergistically enhanced capacitive performance, J. Mater. Res., 32 (2017) 1248-1257. [25] F. Subhan, Z. Liu, & Z.F. Yan, et al. Unusual nickel dispersion in confined spaces of mesoporous silica by one-pot strategy for deep desulfurization of sulfur compounds and FCC gasoline, Chemical Engineering Journal, 321 (2017) 48-57. [26] Y. Lyu, Z. Liu, & XM Liu, et al., Effect of ethanol on the surface properties and n-heptane isomerization performance of Ni/SAPO-11, Appl. Surf. Sci., 401 (2017) 57-64. [27] Y. Liu, Z. Liu, & XM Liu, et al., Effect of lanthanum species on the physicochemical properties of La/SAPO-11 molecular sieve, J. Catal., 347 (2017) 170-184. [28] P. Bai, Z. Liu, & Z.F. Yan, et al., Copolymer Assisted Self-Assembly of Nanoporous Mixed Oxides for Reactive Adsorption Desulfurization, Nanoscience and Nanotechnology Letters, 8 (2016) 931-937. [29] Z. Liu, & Z.F. Yan, et al. Detailed investigation of N-doped microporous carbons derived from urea furfural resin for CO2 capture, Journal of Porous Materials, 22 (2015) 1663-1672. [30] Z. Liu, & Z.F. Yan, et al.Product oriented oxidative bromination of methane over Rh/SiO2 catalysts, J. Nat. Gas Chem., 19 (2010) 522-529. [31] Z. Liu, & Z.F. Yan, et al.Furfuralcohol Co-Polymerized Urea Formaldehyde Resin-derived N-Doped Microporous Carbon for CO2 Capture, Nanoscale Research Letters, 10 (2015) 333. [32] Z. Liu, & Z.F. Yan, et al.Hierarchical SAPO-11 preparation in the presence of glucose, Mater. Lett., 154 (2015) 116-119. [33] W. Xing, Z. Liu, Z. Liu, & Z.F. Yan, et al.Superhigh-rate capacitive performance of heteroatoms-doped double shell hollow carbon spheres, Carbon, 86 (2015) 235-244. [34] C. Wang, & Z. Liu, et al., Using neutral impact collision ion scattering spectroscopy and angular resolved X-ray photoelectron spectroscopy to analyze surface structure of surfactant solutions, Colloid Polym. Sci., 293 (2015) 1655-1666. [35] W. Xing, Z. Liu, & Z.F. Yan, et al. Studies in the capacitance properties of diaminoalkane-intercalated graphene, Electrochim. Acta, 148 (2014) 220-227. [36] Z. Liu, & Z.F. Yan, et al., Hierarchical SAPO-11 synthesis by carbon nanoparticles templating method and its application on n-dodecane hydroisomerization, Advanced Materials Research, 912-914 (2014) 168-171. [37] Z. Liu, & XP Zhou, et al., Tailoring acidity of HZSM-5 nanoparticles for methyl bromide dehydrobromination by Al and Mg incorporation, Nanoscale Research Letters, 9 (2014) 550. [38] Z. Liu, & Z.F. Yan, et al. Synthesis of meso-SAPO-11 and its enhancement of isomerization in fluid catalytic cracking process, Appl Petrochem Res, 4 (2014) 389-394. [39] Z. Liu, & Z.F. Yan, et al., Preparation of hierarchical SAPO-11 molecular sieve and its application for n-dodecane isomerization, Appl Petrochem Res, 4 (2014) 401-407. [40] W. Xing, Z. Liu, & Z.F. Yan, et al., Superior capacitive performance of active carbons derived from Enteromorpha prolifera, Electrochim. Acta, 133 (2014) 459-466. [41] Z. Liu, & Z.F. Yan, et al. Synthesis of hierarchical SAPO-11 for hydroisomerization reaction in refinery processes, Appl Petrochem Res, 4 (2014) 351-358. [42] 刘振*, 阎子峰等人, 硬模板法制备微孔-介孔复合SAPO-11分子筛及其长链烷烃异构化反应研究, 中国石油大学学报(自然科学版), 38 (2014) 153-158. [43] Z. Liu, & Z.F. Yan, et al., The fabrication of porous N-doped carbon from widely available urea formaldehyde resin for carbon dioxide adsorption, J. Colloid Interface Sci., 416 (2014) 124-132. [44] Z. Liu, & Z.F. Yan, et al., Facial synthesis of N-doped microporous carbon derived from urea furfural resin with high CO2 capture capacity, Mater. Lett., 117 (2014) 273-275. [45] Z. Liu, & Z.F. Yan, et al., Hierarchical meso-microporous SAPO-11 synthesis from acid assistant dealuminzation: Effect of acid strength, Applied Mechanics and Materials, 313 (2013) 219-222. [46] Y. Wang, Z. Liu, & Z.F. Yan, et al., Synthesis of hierarchically ordered egg-tray-like macroporous TiO2–SiO2 nanocomposites with ordered mesoporous walls, Mater. Lett., 111 (2013) 173-176. 2.专利 [47] 一种脱硝催化剂及其制备方法和一种脱硝方法, 中国专利, 201911064944.4 (2019). [48] 一种核壳结构加氢异构化催化剂及其制备方法和应用, 中国专利, 201911063968.8 (2019). [49] 一种富含二次孔的Y型分子筛及其制备方法, 中国专利, 201910768541.1 (2019). [50] 一种多产石脑油型加氢裂化催化剂及其应用, 中国专利, 201910771257.X (2019). [51] Mo2C/C纳米复合材料及其制备方法和包含该材料的锂二氧化碳电池正极及其制备方法, 中国专利, CN201810585083.3 (2018). [52] 一种铝离子电池及其制备方法, 中国专利, CN201810608796.7 (2018). [53] 一种以稻壳为原料制备等级孔Y型分子筛的方法, 中国专利, 201810065964.2 (2018). [54] 一种SAPO-11/ZSM-5复合分子筛及其制备方法, 中国专利, 201710383736.5 (2017). [55] 一种极微孔多孔碳材料及其制备方法, 中国专利, 201711402101.1 (2017). [56] 一种极微孔碳材料及其制备方法, 中国专利, 201711377292.0 (2017). [57] 柔性自支撑多孔炭@层状双金属氢氧化物复合材料及其制备方法和应用, 中国专利, 201610860809.0 (2016). [58] 一种可调变酸性的SAPO-11分子筛及其制备方法, 中国专利, 201510891786.5 (2016). [59] 与SiCl4反应铵交换催化裂化废催化剂的复活方法, 中国专利, 201510176129.2 (2015). [60] 增产富含异构烷烃汽油的催化裂化催化剂, 中国专利, 201410130865.X (2014). 截止2022年2月 | ||||||
◎执教课程 | ||||||
本科生:《化工原理》《化学工程基础》《化工工艺与设备》《C1化学与化工》 研究生:《催化剂制备与表征》 | ||||||
◎招收及指导研究生情况 | ||||||
1.指导研究生情况 协助指导博士研究生5名,指导学术研究生20名,专业硕士研究生8名,职工3名。 2.招生专业及要求 化学工程与技术 学术硕士;化学工程专业硕士;化学工程与技术职工 | ||||||
◎学术兼职 | ||||||
[1] 中国化工学会新材料委员会委员; [2] Journal of Porous Material杂志编委; [3] RSC Advances, Carbon, Applied Catalysis A等多家杂志审稿人。 | ||||||
|